Skip to main content

Lamellar Phase Supported Synthesis of Colloidal Gold Nanoparticles, Nanoclusters, and Nanowires

Buy Article:

$113.00 plus tax (Refund Policy)


Gold nanoparticles (Au NP) have been synthesized in aqueous phase under ambient conditions in the presence of a series of various cationic double chain as well as dimeric (gemini) surfactants. The spacer chain and twin tail length of these surfactants has been systematically varied to see the effect of hydrophobicity on their capping ability. It has been observed that the increase in the length of spacer chain (from 12-2-12 to 12-6-12) and twin tails (from 10-2-10 to 14-2-14) significantly increases the lamellar phase formation and which in return acts as a wonderful template to accommodate the NP in the form of nanoclusters and nanowires. The lamellar phase practically facilitates the nucleation of Au° and produces large NP (15±2 nm). All reactions have also been carried out in the presence of -cyclodextrin (CYC) which has strong ability to complex with surfactant tail. The presence of CYC induces a tendency to form nanowire and it is more prominent in the case of surfactants with longer spacer group.


Document Type: Research Article


Publication date: 2007-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more