Skip to main content

Application of Oligonucleotide as a Template for the Assembly of Nucleoamphiphile Bearing Azobenzene at the Air–Water Interface

Buy Article:

$105.00 plus tax (Refund Policy)

In order to assemble amphiphilic adenine having azobenzene, C12AzoC5Ade (AzoAde), at the air–water interface based on the molecular recognition of DNA, we prepared aqueous linear oligothymidylic acids, dT n (n = 4, 6, 8, 10, 30), subphase as templates. Surface pressure–area (πA) isotherms and UV-Vis reflection absorption spectra of AzoAde were measured to investigate the effect of chain length of the oligothymidylic acid on the molecular recognition by forming a complementary A-T base pair. It was showed that AzoAde did not form a stable monolayer on the dT4 subphase and remained monomeric state. While AzoAde provided expanded monolayers and formed J-aggregates of azobenzene moieties on the dT n (n > 4) subphases even at the low molecular density. We also investigated the molecular recognition of template oligonucleotides by comparing dT30 with dA30, indicating that AzoAde had not a specific interaction with dA30 at the air–water interface due to base mismatching. The AzoAde monolayer on the dA30 subphase gave H-aggregate from monomeric state by compressing it. On the other hand, it remained J-aggregated state on dT30 subphase regardless of compression. It was, therefore, suggested that the linear oligothymidylic acids, dT n (n > 4), acted as templates for assembling AzoAde at the air–water interface.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 March 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more