Skip to main content

Iron Oxide Shell as the Oxidation-Resistant Layer in SmCo5@Fe2O3 Core–Shell Magnetic Nanoparticles

Buy Article:

$107.14 + tax (Refund Policy)

This paper presents a synthesis of magnetic nanoparticles of samarium cobalt alloys and the use of iron oxide as a coating layer to prevent the rapid oxidation of as-made Sm–Co nanoparticles. The colloidal nanoparticles of Sm–Co alloys were made in octyl ether using samarium acetylacetonate and dicobalt octacarbonyl as precursors in a mixture of 1,2-hexadecanediol, oleic acid, and trioctylphosphine oxide (TOPO). Such Sm–Co nanoparticle could be readily oxidized by air and formed a CoO antiferromagnetic layer. Exchange biasing was observed for the surface oxidized nanoparticles. In situ thermal decomposition of iron pentacarbonyl was used to create iron oxide shells on the Sm–Co nanoparticles. The iron oxide shell could prevent Sm–Co nanoparticles from rapid oxidation upon the exposure to air at ambient conditions.

Keywords: CORE-SHELL NANOPARTICLE; EXCHANGE BIASING; IRON OXIDE; MAGNETISM; OXIDATION; SAMARIUM COBALT

Document Type: Research Article

Publication date: 01 January 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content