Skip to main content

High-Shear Effects on the Nano-Dispersed Structure of the PVDF/PA11 Blends

Buy Article:

$113.00 plus tax (Refund Policy)


The fabrication of miscible or nanostructured polymer blends or alloys raises much hope, but poses significant scientific and industrial challenges over the past several decades. Here, we propose a novel strategy using high-shear processing and demonstrate the high-shear effects on the nano-dispersed structure formed in the poly(vinylidene fluoride) (PVDF)/polyamide 11 (PA11) blends, in which PA11 domains with a size of several tens of nanometers are dispersed in the PVDF phase. For the blend of PVDF/PA11 = 65/35, the TEM image shows that many nanometer-sized PA11 particles are dispersed in the PVDF domain to form a special type of domain-in-domain morphology. In contrast, no PVDF nano-dispersion was observed in the PA11 phase. The effects of both the screw rotation speed and the mixing time on the blend structure were systematically studied. It shows that the extruder screw rotation speed and the mixing time are two critical factors to prepare the nanostructured blends. In addition, the investigations on the thermal behavior of the obtained blends indicate the improved miscibility between PVDF and PA11 by the high shear processing.


Document Type: Research Article


Publication date: 2006-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more