Skip to main content

The Effect of Carbon Nanotube Dispersion on CO Gas Sensing Characteristics of Polyaniline Gas Sensor

Buy Article:

$113.00 plus tax (Refund Policy)

Polyaniline is one of the most promising conducting polymers for gas sensing applications due to its relatively high stability and n or p type doping capability. However, the conventionally doped polyaniline still exhibits relatively high resistivity, which causes difficulty in gas sensing measurement. In this work, the effect of carbon nanotube (CNT) dispersion on CO gas sensing characteristics of polyaniline gas sensor is studied. The carbon nanotube was synthesized by Chemical Vapor Deposition (CVD) using acetylene and argon gases at 600 °C. The Maleic acid doped Emeradine based polyaniline was synthesized by chemical polymerization of aniline. CNT was then added and dispersed in the solution by ultrasonication and deposited on to interdigitated Al electrode by solvent casting. The sensors were tested for CO sensing at room temperature with CO concentrations in the range of 100–1000 ppm. It was found that the gas sensing characteristics of polyaniline based gas sensor were considerably improved with the inclusion of CNT in polyaniline. The sensitivity was increased and response/recovery times were reduced by more than the factor of 2. The results, therefore, suggest that the inclusion of CNT in MA-doped polyaniline is a promising method for achieving a conductive polymer gas sensor with good sensitivity, fast response, low-concentration detection and room-operating-temperature capability.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2006-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more