Skip to main content

Localized CO2 Laser Annealing Induced Dehydrogenation/Ablation and Optical Refinement of Silicon-Rich Silicon Dioxide Film with Embedded Si Nanocrystals

Buy Article:

$113.00 plus tax (Refund Policy)


CO2 laser annealing induced effects of dehydrogenation, Si nanocrystal precipitation, ablation, and optical refinement in PECVD grown SiO1.25 film are investigated. Dehydrogenation shrinks SiO1.25 thickness by 40 nm after annealing at laser intensity (Plaser) of 4 kW/cm2 for 1.4 ms. As Plaser increases to 6 kW/cm2, the photoluminescence (PL) red-shifts to 806 nm due to the size enlargement of Si nanocrystals, while a reduced optical bandgap energy from 3.3 to 2.43 eV and an enlarged refractive index from 1.57 to 1.87 are also observed. Transmission electron microscopy analysis reveals that the randomly oriented Si nanocrystals exhibit an average diameter of 5.3 nm and a volume density of 1.9 × 1018 cm−3. CO2 Laser ablation initiates at intensity higher than 7 kW/cm2, which introduces numerous structural defects with a strong PL at 410 nm. Such an ablation inevitably leads to a blue-shifted optical bandgap energy from 2.43 to 2.76 eV as Plaser enlarges from 6 to 12 kW/cm2 are concluded.


Document Type: Research Article


Publication date: 2006-12-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more