Skip to main content

Charge Transfer Property of Self-Assembled Viologen Derivative by Electrochemical Quartz Crystal Microbalance Response

Buy Article:

$113.00 plus tax (Refund Policy)


Viologen modified electrodes have been extensively investigated with quartz crystal microbalance (QCM), which has been known as a nano-gram order mass detector, because of their highly reversible electrochemical properties, especially the first reduction-oxidation cycle of V2+ ↔ V•+. The purpose of this work was to study the charge transfer characteristics of self-assembled monolayer (SAM) by changing electrolyte solutions where the cations and anions are different. The redox peak currents were nearly equal charges during redox processes and showed an excellent linear interrelation between the scan rates and second redox peak currents. The charge transfer of self-assembled viologen monolayer was determined by the mass change during the cyclic voltammetry (CV). The total frequency change was about 17.8 Hz, 19.6 Hz, 9.5 Hz, and 8.4 Hz. From this data, we could know the transferred mass was about 19.0 ng, 20.9 ng, 10.2 ng, and 9.0 ng. Finally, the electrochemical quartz crystal microbalance (EQCM) has been employed to monitor the electrochemically induced adsorption of self-assembled monolayer.


Document Type: Research Article


Publication date: November 1, 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics