Skip to main content

Fabrication and Characterization of Organic Light-Emitting Diodes Using Zinc Complexes as Hole-Blocking Layer

Buy Article:

$113.00 plus tax (Refund Policy)

2-(2-Hydroxyphenyl)benzoxazole (HPB) was employed as organic ligand and the corresponding zinc complexes (Zn(HPB)2 and Zn(HPB)q) were synthesized. And their EL properties were characterized. The structures of zinc complexes were determined with FT-NMR, FT-IR, UV-Vis, and XPS. The thermal stability showed up to about 300 °C under nitrogen flow, which was measured by TGA. The photoluminescence (PL) of zinc complexes were measured from the DMF solution. The PL emitted in blue and yellow region, respectively. The EL devices were fabricated by the vacuum deposition. Two kinds of OLEDs devices were fabricated; ITO/NPB (40 nm)/Zn complexes (60 nm)/LiF/Al and ITO/NPB (40 nm)/Alq3 (60 nm)/Zn complexes (5 nm)/LiF/Al. Both of the EL properties as the emitting and the hole-blocking layer were investigated. The EL emission of Zn(HPB)q exhibited green light centered at 532 nm. The device showed a turn-on voltage at 5 V and a luminance of 6073 cd/m2 at 10 V. Meanwhile, the maximum EL the emission of the Zn(HPB)2 device was found to be at 447 nm. And the device showed a luminance of 2813 cd/m2 at 10 V. The ITO/NPB (40 nm)/Alq3 (60 nm)/Zn(HPB)2 (5 nm)/LiF/Al device showed increased luminance of L = 17000 cd/m2 compared to L = 12000 cd/m2 for similar device fabricated without the hole-blocking layer. And the turn-on voltage was significantly affected by the existence of the hole-blocking layer.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2006-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more