Fabrication of Nanosized Alumina Powders by a Simple Polymer Solution Route

$113.00 plus tax (Refund Policy)

Buy Article:


Nanosized alumina (Al2O3) powders had been successfully fabricated by a simple polymer solution route employing polyvinyl alcohol (PVA) as an organic carrier. The fabricated alumina powders had an average particle size of 6.1 nm with a high specific surface area of 99.5 m2/g. As well, the alumina powders were fully crystallized to α phase at a relatively low temperature of 1000 °C. The PVA polymer contributed to a soft and porous microstructure of the calcined alumina powders, and ball-milling process with the porous powders was effective in making nanosized alumina powders. In addition, the content and degree of polymerization of the PVA affected the development of crystallization and powder properties. In this study, the simple polymer technique and milling process for the fabrication of nanosized alumina powders are introduced, and the effects of PVA on the property of the synthesized alumina powders are observed. For the study, the characterizations of the synthesized powders are conducted by using XRD, TEM, particle size analyzer, and nitrogen gas adsorption.


Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2006.071

Publication date: November 1, 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more