Skip to main content

Control of Bio-MEMS Surface Chemical Properties in Micro Fluidic Devices for Biological Applications

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Surface chemistry of silicon/glass based bio-MEMS was controlled by depositing plasma polymerized acrylic acid (ppAc) films at two different electrode positions in a two-stage plasma reactor. AFM and XPS were used to characterize the surface roughness and surface chemistry of the films, respectively. The surface of bio-MEMS was highly functionalized with carboxylic/ester functionalities with a very good surface uniformity. The proportion of carbon atoms as C–OX, C(=O)OX functionalities was decreased and an increase in C=O functionalities was observed when the electrode position was increased from the mesh. These functionalized bio-MEMS devices have advantages in fabrication of reusable micro fluidic devices and the variation of fluid velocity by changing the surface properties may be used to develop a micro-mixing system to control the mixing ratio of different fluids for different biological and chemical applications.

Keywords: ACRYLIC ACID; BIO-MEMS; MICRO-FLUIDICS; MICRO-MIXING SYSTEM; PLASMA POLYMERIZATION

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2006.042

Publication date: 2006-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more