Skip to main content

Charge Transport of Alkanethiol Self-Assembled Monolayers in Micro-Via Hole Devices

Buy Article:

$113.00 plus tax (Refund Policy)


In this paper we fabricated 13440 microscale via hole structure devices using different length of alkanethiol self-assembled monolayers and characterized their electronic transport properties. Statistically averaged transport parameters such as current density, transport barrier height, effective electron mass, and transport decay coefficient were obtained from the great number of these devices. The yield of working microdevices was found as 1.5%. Temperature variable current-voltage characteristics for alkanethiol micro-via hole devices showed typical tunneling behavior when properly fabricated.


Document Type: Research Article


Publication date: 2006-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more