Optical Properties of Ag Nanoparticles Embedded Ba0.5Sr0.5TiO3 Films Prepared by Alternating Pulsed Laser Deposition

$113.00 plus tax (Refund Policy)

Buy Article:


Nanocomposite thin films consisting of nanometer-sized Ag particles embedded in amorphous Ba0.5Sr0.5TiO3 matrix were prepared on fused silica substrates by an alternating pulsed laser deposition method. Their optical nonlinearities have been studied using the Z-scan method. The surface plasmon resonance (SPR) peak shifts to red and increases with the increasing the volume fraction of Ag in the nanocomposite films. The magnitude of the third-order nonlinear susceptibility of the nanocomposite with an Ag volume fraction of 3.3% was calculated to be ∼2 × 10−8 esu at the SPR wavelength.


Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2006.026

Publication date: November 1, 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more