Skip to main content

Surface Passivation of CdS/Zn2 SiO4b Nanocomposites Prepared by a Wet Chemical Route

Buy Article:

$113.00 plus tax (Refund Policy)


Highly luminescent CdS/Zn2SiO4 nanocrystals were prepared by a wet chemical method. The effect of surface passivation was observed in photoluminescence measurements of CdS nanocrystals embedded in colloidal nanocrystallite or amorphous Zn2SiO4 matrix. The resultant luminescent emission of as-prepared CdS/Zn2SiO4 nanocomposite thin films displays two distinct components. One is attributed to the band-edge emission and the other is due to the surface defects. The effect of aging on CdS/Zn2SiO4 nanocomposite thin films has been investigated, showing the active role of Zn2SiO4 matrixin modifying the surface states.


Document Type: Research Article


Publication date: 2006-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more