Surface Passivation of CdS/Zn2 SiO4b Nanocomposites Prepared by a Wet Chemical Route

Authors: Lee, Hyun Joo; Lee, Soo Il

Source: Journal of Nanoscience and Nanotechnology, Volume 6, Number 11, November 2006 , pp. 3369-3372(4)

Publisher: American Scientific Publishers

Buy & download fulltext article:


Price: $113.00 plus tax (Refund Policy)


Highly luminescent CdS/Zn2SiO4 nanocrystals were prepared by a wet chemical method. The effect of surface passivation was observed in photoluminescence measurements of CdS nanocrystals embedded in colloidal nanocrystallite or amorphous Zn2SiO4 matrix. The resultant luminescent emission of as-prepared CdS/Zn2SiO4 nanocomposite thin films displays two distinct components. One is attributed to the band-edge emission and the other is due to the surface defects. The effect of aging on CdS/Zn2SiO4 nanocomposite thin films has been investigated, showing the active role of Zn2SiO4 matrixin modifying the surface states.


Document Type: Research Article


Publication date: November 1, 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page