Skip to main content

Structure, Magnetic and Ion-Exchange Properties of Self-Assembled Triaza-Copper(II)-Oxalate Hybrides Having Nanoscale One-Dimensional Channel

Buy Article:

$105.00 plus tax (Refund Policy)

The X-ray structure, porous and magnetic property of a self-assembled network 1 is described in detail. The single crystal X-ray analysis provides 1 as a three-dimensional network, which contains two-dimensional permanent ring forming nanoscale one-dimensional channels. The inter-replacement of perchlorate and hexafluorophosphate anions in solid 1 proves its porous structure. There is somewhat strong antiferromagnetic interaction (J = −74.1 cm−1) between two copper(II) ions through oxalate bridge and weak antiferromagnetic interaction (J = −5.1 cm−1) through AEP ligand.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2006-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more