Skip to main content

Transport Properties of Coupled Semiconductor Quantum Dots

Buy Article:

$105.00 plus tax (Refund Policy)

We have measured the electronic transport properties of the coupled quantum dot devices at low temperatures. The interplay between the strong many body spin interaction and the molecular states are probed in linear and non-linear transport regime. We observe the formation of strong coherent molecular states clearly visible in the double dot conductance phase diagram. In our study, the spin configuration in multiply coupled quantum dots could be identified using Kondo phenomenon. In addition, the characteristics of the spin dependent molecular states and phase dependant tunneling have been also observed using non-linear conductance measurement of the double dots. The results suggest the importance of the diverse spin related physical issues in artificial quantum dot devices.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2006-11-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more