Skip to main content

Triphenyl Benzene-Bridged Fluorescent Silsesquioxane: Shape-Controlled Hybrid Silicas by Hydrolytic Conditions

Buy Article:

$113.00 plus tax (Refund Policy)

A new silsesquioxane molecule was synthesized, in which triphenyl benzene was connected with three Si(OC2H5)3 groups using three urea groups as the bridge. The molecule could self-assemble through the intermolecular H-bonding among urea groups and interaction of triphenyl benzene core in the solution and it could also be transferred into hybrid silicas by hydrolysis. When the non-preorganized silsesquioxane was hydrolyzed, isolated spherical hybrid silica was gained. However, when the silsesquioxane was preorganized before the hydrolyzation uniform interconnected spherical hybrid silica and intertwined nanofibrous one could be generated under acidic and basic conditions, respectively. The photoluminescence (PL) spectra of the obtained hybrid silicas showed that they still kept the emission properties of their precursor silsesquioxane, and the shift of the emission bands was due to the interaction of triphenyl benzene in the course of polycondensation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: FLUORESCENCE; HYBRID SILICA; SELF-ASSEMBLY; SILSESQUIOXANE; TRIPHENYL BENZENE

Document Type: Research Article

Publication date: 2006-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more