Skip to main content

Poly(amino acid)-Facilitated Electrochemical Growth of Metal Nanoparticles

Buy Article:

$105.00 plus tax (Refund Policy)

Poly(amino acids) are natural chelating agents for various metal ions. Zinc ions were encapsulated in situ in a conductive polypyrrole film using polyglutamic acid as a localized complexing agent within the film. The subsequent electrochemical reduction of the metal ions to zero-valent metal leads to the formation of the nanoparticles. The electrochemical approach demonstrated in this report provides facile regeneration of the particles and also prevents aggregation of nanoparticles in the conductive polymeric film. The correlation of the amount of zinc with the thickness of the film indicates that the zinc resides largely in the outer layer of the film. TEM and EDS data show that the nanoparticles formed are composed of zinc and are 18±7 nm in diameter. The nanoparticle/polymer composite was used to reduce halogenated organics, indicating its potential usefulness in remediation applications.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2006-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more