Skip to main content

Self Assembly of DNA Nanoparticles with Polycations for the Delivery of Genetic Materials into Cells

Buy Article:

$113.00 plus tax (Refund Policy)


Increasing attention has been paid to technology used for the delivery of genetic materials into cells for gene therapy and the generation of genetically engineered cells. So far, viral vectors have been mainly used because of their inherently high transfection efficiency of gene. However, there are some problems to be resolved for the clinical applications, such as the pathogenicity and immunogenicity of viral vectors themselves. Therefore, many research trials with non-viral vectors have been performed to enhance their efficiency to a level comparable to the viral vector. Two directions of these trials exist: Material improvement of non-viral vectors and their combination with various external physical stimuli. In this study gelatin was selected as a non-viral carrier for DNA. To give a positive charge to gelatin, different extents introduction of ethylenediamine (Ed), spermidine (Sd), and spermine (Sm) were reacted with gelatin in the presence of a water-soluble carbodiimide. When positively charged gelatin derivatives (Ed, Sd, and Sm) were mixed with negatively charged DNA, a self assembly of DNA nanoparticle (complex) was formed within few minutes through electrostatic interaction. Irrespective of the type of gelatin derivatives, the apparent molecular size of DNA was reduced by increasing the gelatin/DNA mixing ratio to attain a saturated value of about 150 nm. The condensed gelatin/DNA complexes showed the zeta potential of 10–15 mV. The amount of DNA internalized into the cells was significantly increased by the complexation with every gelatin derivative. The cells incubated with the gelatin/DNA complexes exhibited significantly stronger luciferase activities than naked plasmid DNA. This study clearly demonstrates and self-assembled DNA complexes has potential as a gene delivery vechile and are stable to transfer genetic materials to cells.


Document Type: Research Article


Publication date: August 1, 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more