Skip to main content

Dispersion of Multi-Walled Carbon Nanotubes in Biodegradable Poly(butylene succinate) Matrix

Buy Article:

$105.00 plus tax (Refund Policy)

This communication describes the preparation, characterization and properties of biodegradable poly(butylene succinate) (PBS)/multi-walled carbon nanotubes (MWCNTs) nanocomposite. Nanocomposite was prepared by melt-blending in a batch mixer and the amount of MWCNTs loading was 3 wt%. State of dispersion-distribution of the MWCNTs in the PBS matrix was examined by scanning and transmission electron microscopic observations that revealed homogeneous distribution of stacked MWCNTs in PBS matrix. The investigation of the thermomechanical behavior was performed by dynamic mechanical thermal analysis. Results demonstrated substantial enhancement in the mechanical properties of PBS, for example, at room temperature, storage flexural modulus increased from 0.64 GPa for pure PBS to 1.2 GPa for the nanocomposite, an increase of about 88% in the value of the elastic modulus. The tensile modulus and thermal stability of PBS were moderately improved after nanocomposite preparation with 3 wt% of MWCNTs, while electrical conductivity of neat PBS dramatically increased after nanocomposite formation. For example, the in plane conductivity increased from 5.8 × 10−9 S/cm for neat PBS to 4.4 × 10−3 for nanocomposite, an increase of 106 fold in value of the electrical conductivity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ELECTRICAL PROPERTIES; MECHANICAL; MULTI-WALLED CARBON NANOTUBES; NANOCOMPOSITE; POLY(BUTYLENE SUCCINATE); THERMAL

Document Type: Short Communication

Publication date: 2006-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more