Skip to main content

Suppressing Electrostatic Screening in Nanostructured Electrode Arrays

Buy Article:

$105.00 plus tax (Refund Policy)

An individual nanostructure provides very high electric field enhancement because the sharp curvature of the nanostructure tip amplifies the local electric field near the apex tip. However any practical nanostructured electrode is comprised of an ensemble (array) of nanostructures. In such systems, mutual electrostatic shielding (or screening) severely limits the maximum achievable electric field enhancement. In this paper, we discuss three approaches for suppression of shielding. These include—(1) reducing anode-to-cathode distance to less than the nanostructure-to-nanostructure spacing, (2) increasing length of selected individual nanostructures within the array, and (3) design of electrodes with multistage amplification. We show that these approaches are effective in alleviating electrostatic shielding and that the enhancement factor of the electrode array (ensemble) can be engineered to match that of the individual (isolated) nanostructure.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ELECTRIC FIELD AMPLIFICATION; ELECTROSTATIC SCREENING; FIELD EMISSION; FIELD IONIZATION; NANOSTRUCTURED ELECTRODES

Document Type: Research Article

Publication date: 2006-07-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more