Skip to main content

Synthesis of Ceramic Nanoparticles by Ultrafast Laser Ablation of Solid Targets in Water

Buy Article:

$105.00 plus tax (Refund Policy)

We report production of nanoparticles of several advanced ceramics (Si3N4, SiC, AlN, and Al2O3) by ablation with femtosecond laser pulses of solid targets submerged in deionized water. The products withstand comparison with commercial nanoparticle suspensions obtained by other techniques as they are analyzed by means of transmission electron microscopy. As compared with metal nanoparticles produced with the same technique, we have found that the overall dependence of mean sizes and distribution widths on the laser fluence is similar. We explain why it is difficult to synthetize very small (<5 nm) and monodisperse particles in terms of ablation mechanism and discuss the aplicability of the technique for industrial production.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 July 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more