Skip to main content

Self-Assembled Molecular Pattern by Chemical Lithography and Interfacial Chemical Reactions

Buy Article:

$113.00 plus tax (Refund Policy)

The fabrication of lipid-modified molecular patterns by Chemical Lithography combined with interfacial chemical reactions is reported. In this method, self-assembled monolayers (SAMs) of 4′-nitro-1,1′-biphenyl-4-thiol (NBT) were structured by Chemical Lithography which produced cross-linked 4′-amino-1,1′-biphenyl-4-thiol (cABT) monolayers within a nitro-terminated (NBT) matrix. The terminal amino groups in the cABT monolayer were diazotized to create diazo cations, and the lipid monolayer with negative charge was assembled on the diazo regions by electrostatic attraction. Under the exposure of UV light, the photoreaction occurs. The diazonium groups interacting with the lipid headgroups via electrostatic attraction decompose and release N2 which leads to the lipid monolayer covalently attaching to the cABT region. The presence of phosphorus in X-ray photoelectron spectra (XPS) reveals the binding of the phospholipid layer to the cABT surface. Atomic force microscopy (AFM) images display that lipid-modified molecular patterns with different sizes and shapes and with a thickness of ca. 2.5 nm have been formed. The resulting lipid-modified molecular patterns are considered to be a first step towards obtaining stable biointerfacing patterns and studying biomolecular recognition.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: CHEMICAL LITHOGRAPHY; PATTERNING; PHOTOREACTION; SELF-ASSEMBLY

Document Type: Short Communication

Publication date: 2006-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more