Skip to main content

Nuclear Magnetic Resonance Study of Fullerene-Like WS2

Buy Article:

$113.00 plus tax (Refund Policy)


Inorganic fullerene-like nanoparticles of WS2 (IF-WS2), are synthesized by a reaction of tungsten oxide with molecular hydrogen and hydrogen sulfide. The synthesized nanoparticles appear as large agglomerates (>40 microns), each one counting thousands of IF nanoparticles. 1H nuclear magnetic resonance study of these nanoparticles is reported. The measurements show that the prepared product contains water (and possibly some hydrogen) molecules that occupy the voids in the central part of the fullerene-like nanoparticles and the nanopores between the adhering IF-WS2 particles. Defects in the IF-WS2 structure, arising due to the strain release during the folding of the layers, may result in additional sites for the absorbed water. Vacuum annealing of the powder leads to substantial reduction in the amount of absorbed water molecules.


Document Type: Research Article


Publication date: 2006-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more