Controlled Synthesis and Field Emission Properties of ZnO Nanostructures with Different Morphologies

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

By simply controlling atmosphere, rods, tetraleg-rods, and arrays of ZnO nanostructures have been fabricated respectively through pure zinc powder evaporation without catalyst at temperature of 650 &sim 700 °C. Investigations through HRTEM and XRD showed that the growth of the synthesized ZnO nanostructures was controlled by vapor-solid mechanism. Field emission measurements revealed that all of the structures, owing to their very low turn-on voltage, sufficient emission current and proper linearity of 1/V ∼ Ln(I/V2), are likely to be potential candidates as a field emitter. The results also indicated that field emission properties are relative to morphology and size of the tips of ZnO nanostructures, and the nanorods with sharp tips possess the first-class FE property.

Keywords: CRYSTAL GROWTH; FIELD EMISSION PROPERTY; VAPOR-SOLID MECHANISM; ZNO NANOSTRUCTURES

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2006.086

Publication date: March 1, 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more