Skip to main content

Assembly of Hybrid Oligonucleotide Modified Gold (Au) and Alloy Nanoparticles Building Blocks

Buy Article:

$113.00 plus tax (Refund Policy)


The alloy-based hybrid materials with macroscopic network arrays were developed by AuAg/Au and AuAgPd/Au nanoparticle composites through oligonucleotides hybridization. AuAg/Au and AuAgPd/Au exhibited distinct organization. The morphology of AuAg/Au conjugation assembled mainly as compact aggregates while AuAgPd/Au hybrid conjugated into the loosen network assemblies. The dehybridization temperatures were studied as a function of molar ratio of alloy/Au. It was found that higher alloy/gold molar ratio led to stronger hybridization for alloy/gold composite, accompanied with increased melting temperature. These results could be interpreted in terms of more alloy nanoparticles bound to a Au particle when the molar ratio of alloy/gold increased. The thermal analysis also showed that AuAg/Au exhibited higher dehybridization temperature. A modified model describing the dehybridization probability of an intact Au/alloy aggregate was performed to support the dehybridization temperature increased with increasing alloy/Au molar ratio. As to more oligonucleotides carried by AuAg (4.9 ± 1.9 nm) than by AuAgPd (4.4 ± 1.5 nm) due to larger size in AuAg, the efficient hybridization could result in higher dehybridization temperature in AuAg/Au.


Document Type: Research Article


Publication date: 2006-01-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more