Skip to main content

Y-Junction Multibranched Carbon Nanofibers

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Multibranched carbon nanofiber (CNF) is produced by a thermal chemical vapor deposition method using camphor as precursor. Nickel and cobalt catalyst was deposited on silicon substrate by e-beam evaporation and used as substrate for the growth of carbon nanomaterials. Branched carbon nanofibers were grown on the nickel thin film at 900 °C, whereas spherical carbon beads formed on the cobalt thin film. These fibers followed base growth mechanism devoid of any catalyst particle at the tip of fibers.

Keywords: CAMPHOR; CARBON NANOFIBERS; CVD; Y-JUNCTIONS

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2005.191

Publication date: October 1, 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2005/00000005/00000010/art00019
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more