Skip to main content

Optical and Field Emission Properties of Zinc Oxide Nanostructures

Buy Article:

$105.00 plus tax (Refund Policy)

Zinc Oxide (ZnO) nano-pikes were produced by oxidative evaporation and condensation of Zn powders. The crystalline structure and optical properties of the ZnO nanostructures (ZnONs) greatly depend on the deposition position of the ZnONs. TEM and XRD indicated that the ZnONs close to the reactor center, ZnON-A, has better crystalline structure than the ZnONs away from the center, ZnON-B. ZnON-A showed the PL and Raman spectra characteristic of perfect ZnO crystals, whereas ZnON-B produced very strong green emission band at 500 nm in the photoluminescence (PL) spectrum and very strong Raman scattering peak at 560 cm−1, both related to the oxygen deficiency due to insufficient oxidation of zinc vapor. ZnON-B exhibited better field emission properties with higher emission current density and lower turn-on field than ZnON-A.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2005-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more