Skip to main content

Electrical Characterization of Silicon Tips Using Conducting Atomic Force Microscopy

Buy Article:

$113.00 plus tax (Refund Policy)


The electrical properties of n-doped Si tips have been characterized in conducting atomic force microscopy under various conditions. Si tips with SiO2 layer on them present complex electric properties: which include a larger positive threshold bias, which is different from that of its doped semiconductor material. Silicon tips after removing their SiO2 layer had smaller positive threshold bias; such bias varied with the loading force: smaller loading forces corresponding to larger positive threshold biases, and it remained constant at lower levels for larger loading forces. Humidity of experiments influenced the threshold bias: lower relative humidities (<25%) and larger loading forces were in favor of getting stable threshold bias. The conductance increased remarkably in high relative humidity although it was kept in a narrow range when relative humidity was lower than 40%. Loading force didn't affect the conductance in the examined relative humidity conditions. One advantage of bare silicon tips over commercial conducting ones is that they smaller radius than gold-coated tips; this is in more favor of reaching single molecular electronics.


Document Type: Research Article


Publication date: August 1, 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more