Skip to main content

Construction of a Novel Peptide Nucleic Acid Piezoelectric Gene Sensor Microarray Detection System

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

A novel 2 × 5 clamped style piezoelectric gene sensor microarray has been successfully constructed. Every crystal unit of the fabricated gene sensor can oscillate independently without interfering with each other. The bis-peptide nucleic acid (bis-PNA) probe, which can combine with target DNA or RNA sequences more effectively and specifically than a DNA probe, was designed and immobilized on the surface of the gene sensor microarray to substitute the conventional DNA probe for direct detection of the hepatitis B virus (HBV) genomic DNA. Detection conditions were then explored and optimized. Results showed that PBS buffer of pH 6.8, an ion concentration of 20 mmol/liter, and a probe concentration of 1.5 mol/liter were optimal for the detection system. Under such optimized experimental conditions, the specificity of bis-PNA was proved much higher than that of DNA probe. The relationship between quantity of target and decrease of frequency showed a typical saturation curve when concentrations of target HBV DNA varied from 10 pg/liter to 100 g/liter, and 10 g/liter was the watershed, with a statistic linear regression equation of I gC = −2.7455+0.0691ΔF and the correlating coefficient of 0.9923. Fortunately, this is exactly the most ordinary variant range of the HBV virus concentration in clinical hepatitis samples. So, a good technical platform is successfully constructed and it will be applied to detect HBV quantitatively in clinical samples.

Keywords: GENE SENSOR; HBV; MICROARRAY; PEPTIDE NUCLEIC ACID

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2005.223

Publication date: 2005-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more