Skip to main content

Therapeutic Effect of Fe2O3 Nanoparticles Combined with Magnetic Fluid Hyperthermia on Cultured Liver Cancer Cells and Xenograft Liver Cancers

Buy Article:

$105.00 plus tax (Refund Policy)

The therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia (MFH) on human hepatocarcinoma SMMC-7721 cells in vitro and xenograft liver cancer in nude mice is studied. We examined growth and apoptosis of SMMC-7721 cells treated with MFH containing Fe2O3 nanoparticles at various concentrations (2, 4, 6, and 8 g/liter) for 30–60 min by using MTT, flow cytometry (FCM), and transmission electron microscopy (TEM). We also observed weight and volume inhibitory rates of the tumors of SMMC-7721-bearing nude mice by using animal experiments. The results showed that Fe2O3 nanoparticles combined with MFH could significantly inhibit the proliferation and increase the ratio of apoptosis of SMMC-7721 cells, and the effect was dose-dependent. The inhibitory rate was 26.5%, 33.53%, 54.4%, and 81.2%, respectively, and the apoptosis rate was 30.26%, 38.65%, 50.28%, and 69.33%, respectively. Animal experiments showed that tumors became small. The weight inhibitory ratio was 42.10%, 66.34%, 78.5%, and 91.46%, and the volume inhibitory ratio was 58.77%, 80.44%, 93.40%, and 98.30%, respectively. Compared with the control and experimental groups, each group had statistically significant difference (p < 0.05). So, Fe2O3 nanoparticles combined with MFH could inhibit the proliferation and induce apoptosis of SMMC-7721 cells and also has a significant inhibitory effect on the weight and volume of xenograft liver cancer. However, the mechanism remains to be further investigated.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2005-08-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more