Skip to main content

Polyacrylamide Gel Film Immobilized Molecular Beacon Array for Single Nucleotide Mismatch Detection

Buy Article:

$105.00 plus tax (Refund Policy)

We reported polyacrylamide gel immobilized molecular beacon array for single nucleotide mismatch detection in this paper. Molecular beacons are oligonucleotide probes fluorescing upon hybridization to their complementary DNA/RNA targets with excellent sensitivity and high selectivity. The specially designed molecular beacon for immobilization contains a 15 base loop sequence with a 5 base pair stem, a polyT (20 bases) spacer, a 5′-end amino group for immobilization, a fluorescein in the middle of the sequence as the fluorophore, and a 3′-end DABCYL as the quencher. Between the 5′-end amino group and the stem, the polyT is used to minimize disability caused by 5′-end immobilization. The molecular beacon microarray was fabricated by a pin-based spotting robot and the hybridization was investigated by confocal microscope. A real-time hybridization process at room temperature was registered every minute for 20 min after the target solution was pumped into the hybridization cell. The result indicates that a polyacrylamide film coated glass slide provides an ideal solution-like environment for molecular beacon probes. The potential applications of this kind of molecular beacon array are mutation detection, disease mechanisms, disease diagnostics, etc. in a parallel, cost saving, and label-free detection way.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: MICROARRAY; MOLECULAR BEACON; MUTATION DETECTION; POLYACRYLAMIDE GEL; SINGLE NUCLEOTIDE MISMATCH DETECTION

Document Type: Research Article

Publication date: 2005-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more