Skip to main content

An Effective Thermal Conductivity Model of Nanofluids with a Cubical Arrangement of Spherical Particles

Buy Article:

$113.00 plus tax (Refund Policy)

The theoretical investigation of the effective thermal conductivities of nanofluids, a new class of solid–liquid suspensions, is important in both predicting and designing nanofluids with effective thermal conductivities. We have developed a new thermal conductivity model for nanofluids that is based on the assumption that monosized spherical particles are uniformly dispersed in the liquid and are located at the vertexes of a simple cubic lattice, with each particle surrounded by a liquid layer having a thermal conductivity that differs from that of the bulk liquid. This model nanofluid with a cubical arrangement of nanoparticles gives a more practical upper limit of thermal conduction than a model nanofluid with a parallel arrangement of nanoparticles. The new model unexpectedly shows a nonlinear relationship of thermal conductivity with particle concentration, whereas the conductivity–concentration curve changes from convex upward to concave upward with increasing volume concentration. The effects of particle and layer parameters on the effective thermal conductivities are also analyzed. A comparison of predicted thermal conductivity values and experimental data shows that the predicted values are much higher than the experimental data, a finding that indicates that there is a potential to further improve the effective thermal conductivities of nanofluids with more uniformly dispersed particles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: MODELING; NANOFLUIDS; NANOLAYERS; SOLID-LIQUID MIXTURES; THERMAL CONDUCTIVITY

Document Type: Research Article

Publication date: 2005-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more