Skip to main content

Structural and Vibrational Properties of Small Carbon Clusters

Buy Article:

$105.00 plus tax (Refund Policy)

An ab-initio comprehensive study of the stability and structural and vibrational properties of small carbon clusters, CN for N = 1 − 10, has been made. We use a self-consistent pseudopotential method within density functional theory in the generalized gradient approximation considering spin polarization. The estimated values of binding energies for the various clusters are overestimated in the non-spin-polarized calculations. On the other hand, for the spin-polarized case, the computed binding energies are in very good agreement with the available experimental data. Also, the calculated vibrational frequencies for CN, N = 2−5, are in reasonable agreement with the available experimental values.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 2005-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more