Skip to main content

Properties of Flame Synthesized Germanium Oxide Nanoparticles

Buy Article:

$113.00 plus tax (Refund Policy)


Germanium oxide (GeOx) nanoparticles in the size range from 1.5 to 10 nm were synthesized in a low-pressure premixed H2/O2/Ar flame in the pressure range 25–55 mbar. The flame was doped with different amounts of tetramethylgermanium (Ge(CH3)4) ranging from 500 to 2000 ppm. The influence of process parameters such as pressure, flame coordinate, and cold gas flow velocity with respect to growth of germanium oxide particles were investigated. The formed particles were analyzed in-situ according to their mass and charge by means of a particle mass spectrometer (PMS). The specific surface area was determined ex-situ by the BET method. The crystal structure and chemical composition of the produced nanopowder was characterized by EDX and XRD measurements. Additionally, the particles were analyzed by means of FT-IR spectroscopy.


Document Type: Research Article


Publication date: 2005-03-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more