If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Nanostructured Antifouling Poly(ethylene glycol) Films for Silicon-Based Microsystems

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The creation of antifouling surfaces is one of the major prerequisites for silicon-based microelectrical-mechanical systems for biomedical and analytical applications (known as BioMEMS). Poly(ethylene glycol) (PEG), a water-soluble, nontoxic, and nonimmunogenic polymer has the unique ability to reduce nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. To this end, we have analyzed PEG thin films of various grafting densities (i. e., number of PEG chains per unit area) coupled to silicon using a single-step PEG–silane coupling reaction scheme using variable-angle ellipsometry. Initial PEG concentration and coupling time were varied to attain different grafting densities. These data were theoretically analyzed to understand the phenomenon of PEG film formation. Furthermore, all the PEG films were evaluated for their ability to control biofouling using albumin and fibrinogen as the model proteins. PEG thin films formed by using higher PEG concentrations (≥10 mM PEG) or coupling time (≥1 h) demonstrated enhanced protein fouling resistance behavior. This analysis is expected to be useful to form PEG films of desired grafting density on silicon substrates for appropriate application.

Keywords: BIOMEMS; COVALENT COUPLING; ELLIPSOMETRY; MICROSYSTEMS; POLYETHYLENE GLYCOL

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2005.030

Publication date: February 1, 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more