Skip to main content

Evaporated Nanostructured Y2 O3:Eu Thin Films

Buy Article:

$105.00 plus tax (Refund Policy)

Europium-doped yttrium oxide (Y2 O3:Eu) is a well-known luminescent material that in recent years has been studied in thin-film form. However, to date there has not been a great effort put into altering the nanostructure of these films. A thin-film deposition technique called glancing angle deposition allows for a high degree of control over the nanostructure of the thin film, resulting in thin films with nanostructure geometries ranging from chevron and post to helix. Glancing-angle deposition was used to make europium-doped yttrium oxide thin films with slanted-post nanostructures. Portions of the films were annealed in air at 850 °C for 10 hours following deposition. Scanning electron microscopy was used to characterize the nanostructures of the films, while UV laser excitation was used to characterize the photoluminescence properties of the films. The annealed samples exhibited increased photoluminescent responses compared to unannealed samples; however, the porous nanoscale geometry of the films was unaffected. In order to optimize the photoluminescence properties of the films, both the partial pressure of oxygen during film deposition and the level of europium doping in the source material used were varied. Films fabricated from the source material with a greater amount of europium doping had larger photoluminescent responses, while the optimal partial pressure of oxygen during electron-beam evaporation was found to be less than 1.0 × 10−4 torr.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2005-02-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more