Skip to main content

The Evolution of Advanced Mechanical Defenses and Potential Technological Applications of Diatom Shells

Buy Article:

$113.00 plus tax (Refund Policy)


Diatoms are unicellular algae with silicified cell walls, which exhibit a high degree of symmetry and complexity. Their diversity is extraordinarily high; estimates suggest that about 10 5 marine and limnic species may exist. Recently, it was shown that diatom frustules are mechanically resilient, statically sophisticated structures made of a tough glass-like composite. Consequently, to break the frustules, predators have to generate large forces and invest large amounts of energy. In addi- tion, they need feeding tools (e. g., mandibles or gastric mills) which are hard, tough, and resilient enough to resist high stress and wear, which are bound to occur when they feed on biomineral- ized objects such as diatoms or other biomineralized protists. Indeed, many copepods feeding on diatoms possess, in analogy to the enamelcoated teeth of mammals, amazingly complex, silica- laced mandibles. The highly developed adaptations both to protect and to break diatoms indicate that selection pressure is high to optimize material properties and the geometry of the shells to achieve mechanical strength of the overall structure. This paper discusses the mechanical challenges which force the development of mechanical defenses, and the structural components of the diatom frustules which indicate that evolutionary optimization has led to mechanically sophisticated structures. Understanding the diatom frustule from the nanometer scale up to the whole shell will provide new insights to advanced combinations of nanostructured composite ceramic materials and lightweight architecture for technological applications.


Document Type: Research Article


Publication date: January 1, 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics