If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Diatomics: Toward Diatom Functional Genomics

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

For diatom biologists one of the most interesting research areas over the next years will be in linking mathematical models for pattern formation with information derived from molecular genetic, biochemical, and physiological studies. A major goal of this research is to exploit diatom proficiency in biogenic silica formation to develop strategies for bio-inspired nanofabrication of silicon based materials. Development of high-throughput methods for the functional analysis of diatom genes is a key step toward this goal. In this article we review the different techniques available to investi- gate gene and protein function in diatoms. Furthermore, to make diatom research as effective as possible the research community must address the question of which diatom species should be developed as a model. Choice of a diatom model organism should be made on the basis of several criteria, such as the ease of genetic manipulation, ecological relevance, or biomineralization capability. Phaeodactylum tricornutum is one of the principal three species that are candidates for such a model. For this species we have accomplished the first large-scale analysis of 12 000 expressed sequence tags (ESTs) and have organized it in a queryable database, Phaeodactylum tricornutum database (PtDB). A summary of the functional analysis of this EST collection is presented, and genes of particular interest are highlighted.

Keywords: ALGA POLYMORPHISM; EST DATABASE; GENE EXPRESSION; PROTEIN LOCALIZATION; SILICA BIOMINERALIZATION

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2005.003

Publication date: January 1, 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more