If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Ultrasound-Assisted Fabrication of Nanoporous CdS Films

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A new method for fabricating nanoporous CdS films is reported. It involves exposing the CdS solution with ultrasound waves during the process of dip coating. Indium tin oxide (ITO)-coated glass and plastic (commercial transparency) were used as substrates. In each case three different precursors were used for dip coating. The precursors used were CdCl2 and thiourea in one case and CdS nanoparticles prepared by sonochemical and microwave-assisted methods in the other two cases. X-ray diffraction studies performed on these powders show a phase corresponding to cubic CdS. The Field Emission Scanning Electron Microscopy (FE-SEM) images of the films on plastic showed uniform pores with a diameter of 80 nm for all three methods. Optical absorption measurements indicated a blue shift and multiple peaks in the absorption curve. The FE-SEM observations of the films on an ITO/glass substrate indicated a crystalline film with voids. The UV-vis absorption results indicated a blue shift in the absorption with an absorption edge at 435, 380, and 365 nm for CdS films made by solution growth, sonochemical, and microwave routes, respectively. The magnitude of the absorption is dependent on film thickness, and the observed blue shift in the absorption can be explained on the basis of quantum confinement effects.

Keywords: BLUE SHIFT; CDS; NANOCRYSTALLINE; NANOPOROUS; QUANTUM CONFINEMENT

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2004.049

Publication date: January 1, 2004

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more