Skip to main content

Hydrocarbon Decomposition in Alumina Membrane: An Effective Way to Produce Carbon Nanotubes Bundles

Buy Article:

$113.00 plus tax (Refund Policy)


Carbon nanotubes were synthesised within the pores of an alumina membrane. The membrane had 200 nm diameter pores and 60 m thickness, and ethylene was used as carbon source. Membrane dissolution by HF results in a bundle of parallel open tubes, aligned without macroscopic defects. The external diameter of the tubes is uniform and there is no evidence of any amorphous carbon. Wall thickness control was obtained by varying the reaction time, length by the thickness of alumina membrane, and external tube diameter by the membrane pore size.

Scanning (SEM) and transmission (TEM) electron microscopy, atomic force microscopy (AFM), X-ray diffraction, thermogravimetric analysis (TG) and surface area evaluation by nitrogen adsorption were used for the characterization of membrane and nanotubes.


Document Type: Research Article


Publication date: 2004-09-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more