Novel Methods of Forming Self-Assembled Nanostructured Materials: Ni Nanodots in Al2O3 and TiN Matrices

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We have developed two novel methods of growing self-assembled nanodot arrays of uniform size (diameter 2–50 nm) of a variety of materials in crystalline as well as amorphous matrices. These methods employ a pulsed laser deposition technique and are classified as: (a) sequential growth method; and (b) simultaneous growth method. In the first method, the nanodots and matrix material are formed sequentially, while in the second method, nanodots and matrix materials grow simultaneously. In the sequential growth, self-assembly of nanodots is controlled by the flux of materials, interfacial energy, intervening matrix layer, substrate and laser parameters. For the simultaneous growth method of self-assembly of nanodots, there is additional requirement that the material of the nanodot and the matrix should be such that the Gibb's free energy of oxidation of the constituent of matrix material is much lower than that of the nanodot material.

Keywords: MAGNETIC PROPERTIES; NICKEL NANODOTS; SELF-ASSEMBED NANOMATERIALS; TEM

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2004.107

Publication date: September 1, 2004

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more