Skip to main content

Multiscale Simulations of Carbon Nanotube Nucleation and Growth: Electronic Structure Calculations

Buy Article:

$105.00 plus tax (Refund Policy)

Several first-principles surface and bulk electronic structure calculations relating to the nucleation and growth of single-wall carbon nanotubes are described. Density-functional theory in various forms is used throughout. In the surface-related calculations, a 38-atom Ni cluster and several low-index Ni surfaces are investigated using pseudopotentials and plane-wave expansions. The energetic ordering of the sites for C atom adsorption is found to be the same, with the Ni(100) facet favored. The bulk diffusion coefficient of C in Ni as a function of cluster size and temperature is calculated from various molecular dynamics approaches. In another group of bulk-related calculations, Gaussian orbital basis sets are used to study a cluster or "flake" containing 14 C atoms. The flake is a segment of three hexagons from an "unrolled" carbon nanotube, with an armchair termination. The binding energies of C, Ni, Co, Fe, Cu, and Au atoms to it were calculated in an effort to gain insight into the mechanism for the high catalytic activity of Ni, Co, and Fe and the lack of it in Cu and Au. The binding energies of Cu and Au are about 1 eV less than those of the three catalytic elements. Similar methods are used to study the initial stages of nanotube growth within the context of classical nucleation theory. Finally, issues relating to the establishment of a fundamental catalytic mechanism are addressed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CARBON NANOTUBES; CATALYSIS ELECTRONIC STRUCTURE; GROWTH; SIMULATIONS

Document Type: Research Article

Publication date: 2004-04-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more