Skip to main content

Nucleation and Growth of Single-Walled Nanotubes: The Role of Metallic Catalysts

Buy Article:

$105.00 plus tax (Refund Policy)

We present a review of experimental and theoretical results on the nucleation and growth of single-walled nanotubes, with particular emphasis on the growth of nanotube bundles emerging from catalyst particles obtained from evaporation-based elaboration techniques. General results are first discussed. Experiments strongly suggest a root-growth process in which carbon, dissolved at high temperatures in catalytic particles, segregates at the surface at lower temperatures to form tube embryos and finally nanotubes through a nucleation and growth process. A theoretical analysis of the reasons carbon does not always form graphene sheets to wrap the particles suggests analogies with other surface or interface instabilities, in particular, with those found in epitaxial growth. In the second part, detailed experimental results for nickel-rare earth metal catalysts are presented. By using various electron microscopy techniques, it is shown that carbon and the rare earth metal co-segregate at the surface of the particle and form carbide platelets, providing nucleation sites for nanotubes growing in directions perpendicular to the surface. A simple theoretical model is then presented in which the role of the rare earth metal is just to transfer electrons from metal to carbon. The graphene sheet is shown to become unstable; pentagons and heptagons are favored, which can explain the occurrence of local curvatures and of tube embryos. Finally, a brief discussion of some recent atomistic models is given.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 April 2004

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more