Skip to main content

Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

This article examines the effect of interfacial load transfer on the stress distribution in carbon nanotube/polymer composites through a stress analysis of the nanotube/matrix system. Both isostrain and isostress loading conditions are investigated. The nanotube is modeled by the molecular structural mechanics method at the atomistic level. The matrix is modeled by the finite element method, and the nanotube/matrix interface is assumed to be bonded either perfectly or by van der Waals interactions. The fundamental issues examined include the interfacial shear stress distribution, stress concentration in the matrix in the vicinity of nanotube ends, axial stress profile in the nanotube, and the effect of nanotube aspect ratio on load transfer.

Keywords: CARBON NANOTUBE; INTERFACE; LOAD TRANSFER; MULTISCALE MODELING; NANOCOMPOSITE

Document Type: Research Article

DOI: http://dx.doi.org/10.1166/jnn.2003.233

Publication date: October 1, 2003

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
asp/jnn/2003/00000003/00000005/art00014
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more