Skip to main content

Interplay of Confinement, Strain, and Piezoelectric Effects in the Optical Spectrum of GaN Quantum Dots

Buy Article:

$105.00 plus tax (Refund Policy)

We theoretically investigated excitonic states, energy and oscillator strength of optical transitions in GaN quantum dots characterized by different size, shape, interface, and substrate. On the basis of our multi-band model we determined that the piezoelectric field-induced red shift of the ground state transition, observed in recent experiments, can manifest itself only in strained GaN/AlN dots with the dot height larger than 3 nm. It was also established that the oscillator strength of the red-shifted transitions is small (< 0.05) and decreases fast with increasing the dot size, while the strength of ground state transitions in c-GaN/c-AlN and GaN/dielectric dots is large (~0.4-0.7) and almost independent of the dot size.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CONFINEMENT; GAN QUANTUM DOTS; PIEZOELECTRIC EFFECT; STRAIN

Document Type: Research Article

Publication date: 2003-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more