Skip to main content

Carbon Nanotube Synthesis in a Flame with Independently Prepared Laser-Ablated Catalyst Particles

Buy Article:

$113.00 plus tax (Refund Policy)

Abstract:

Laser ablation has been used ex situ to create metal nanoparticles for introduction into a reactive pyrolysis flame. By prior synthesis of the metal nanoparticles, the effects of the reactive gases can be clearly separated from the pyrolysis chemistry of a solvent carrier, as when nebulized solutions are used. Moreover, varying reactivity issues associated with particle growth and size are bypassed.

Our results show that Fe selectively reacts with CO to produce nanotubes, whereas Ni selectively reacts with C2H2 to produce nanofibers. These observations are interpreted through the donation and withdrawal of electron density between the adsorbate's molecular orbitals and surface atoms of the metal nanoparticle. The rate of reaction of Ni with only C2H2 is found to be greater than the rate with C2H2 and CO. This suggests that CO inhibits the Ni-catalyzed reaction.

Keywords: CARBON NANOTUBES; CATALYSIS; FLAME; NANOFIBERS; SYNTHESIS

Document Type: Research Article

DOI: https://doi.org/10.1166/jnn.2003.201

Publication date: 2003-06-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more