Skip to main content

Bending Properties of Carbon Nanotubes Encapsulating Solid Nanowires

Buy Article:

$113.00 plus tax (Refund Policy)


Using empirical potentials and atomistic simulations, we model three-point bend tests of single-walled carbon nanotubes encapsulating metal nanowires. The presence of a metal nanowire inside the nanotube greatly suppresses the tube-buckling instability. Increasing tube diameter leads to an increase in the bending strength; however, in contrast to hollow tubes, there is no decrease in the maximum deflection before buckling. Analysis of the principal bending vibrational mode shows a lowering of the frequency, associated with increased tube inertia. Remarkably, metal-filled tubes exhibit strong damping of oscillations whereas unfilled single-walled and multiwalled tubes show no damping. Our studies demonstrate the benefits of filling tubes with solids to modify bending strength and flexibility, suggesting applications for nanotube-based elements in micromechanical devices or nanoprobes.

Keywords: Buckling; Carbon Nanotubes; Composites; Damping.; Molecular Dynamics

Document Type: Research Article


Affiliations: 1: Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA 2: Physics Department, Rensselaer Polytechnic Institute, Troy, New York, USA

Publication date: October 1, 2002

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more