Skip to main content

High Yield of Pure Multiwalled Carbon Nanotubes from the Catalytic Decomposition of Acetylene on in Situ Formed Cobalt Nanoparticles

Buy Article:

$113.00 plus tax (Refund Policy)

For the first time, multiwalled carbon nanotubes (MWNTs) could be formed selectively in a high yield, free of any disordered carbon by-product, from the catalytic decomposition of acetylene at 600 °C on a CoxMg(1-x)O solid solution. Starting from 1 g of catalytic substrate, 4 g of pure MWNTs were obtained after its dissolution in boiling concentrated HCl, without any additional purification in strongly oxidizing medium, as is required for other methods of nanotube production. In situ reduction of CoO by dihydrogen liberated from acetylene decomposition allows highly divided metal particles to be continuously produced as synthesis proceeds. This is undoubtedly the reason for the good performance of the catalyst and for the ability to produce nanotubes in a narrow diameter range, namely from 10 to 15 nm. With the use of acetylene instead of methane, the synthesis proceeds at low temperature, which prevents the growth of carbon shells, in which the metal particles are generally embedded, decreasing their activity. Because of the very low specific surface area of the catalyst support, the amount of disordered carbon by-product formed is negligible.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Acetylene; Cox Mg(1-x)O Solid Solution; High-yield Synthesis; In Situ Catalysis.; Multiwalled Nanotubes

Document Type: Research Article

Affiliations: 1: CRMD, CNRS-University, 1B, rue de la Férollerie, 45071 Orléans Cedex 02, France 2: ICTE, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland

Publication date: 2002-10-01

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more