If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Magnetism in Nanoclusters and Cluster-Assembled Thin Films

$113.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Increasing attention has been focused on the magnetic behavior of nanoparticles with diameters of 1–5 nm (~50–5000 atoms). In this size range fundamental magnetic parameters such as the orbital and spin magnetic moments per atom deviate significantly from bulk values, and studying clusters addresses fundamental problems in mesoscopic magnetism, which is not as well understood as in either the atomic or the bulk regimes. There is also a growing realization of the enormous industrial potential of materials built by depositing preformed nanoclusters instead of atoms. If the clusters are size-selected and deposited in conjunction with an atomic vapor of a matrix material, it is possible to produce granular films in which there is independent control over the particle size and volume fraction. Using this technique, it also becomes possible to make granular mixtures of miscible materials. This unprecedented degree of control over the properties of the films holds the promise of new magnetic materials with "engineered properties." To fully realize this potential requires a greater understanding of not only the individual particles, but also how they interact in dense assemblies. There has been great progress in understanding some aspects of the magnetic behavior of nanoclusters and cluster-assembled materials. The mechanisms that generate spin and orbital moments that are enhanced by up to 36 and 200%, respectively, relative to the bulk in isolated clusters are well understood as is the dynamical behavior of the magnetic moment. Not so well understood is the observed magnetic anisotropy, which often has a different symmetry than the bulk. In dense assemblies, the nature of the interparticle coupling and the relative importance of dipolar and exchange interactions also require further research.

Keywords: APPLICATIONS; CLUSTER-ASSEMBLED THIN FILMS; DEPOSITION METHODS; GIANT MAGNETORESISTANCE; MORPHOLOGY; NANOCLUSTERS; NANOMAGNETISM; SQUID

Document Type: Review Article

DOI: http://dx.doi.org/10.1166/jnn.2001.051

Affiliations: Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

Publication date: September 1, 2001

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more