Skip to main content

Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations

Buy Article:

Your trusted access to this article has expired.

$105.00 plus tax (Refund Policy)

The thermal interface conductance between Al and Si was simulated by a non-equilibrium molecular dynamics method. In the simulations, the coupling between electrons and phonons in Al are considered by using a stochastic force. The results show the size dependence of the interface thermal conductance and the effect of electron–phonon coupling on the interface thermal conductance. To understand the mechanism of interface resistance, the vibration power spectra are calculated. We find that the atomic level disorder near the interface is an important aspect of interfacial phonon transport, which leads to a modification of the phonon states near the interface. There, the vibrational spectrum near the interface greatly differs from the bulk. This change in the vibrational spectrum affects the results predicted by AMM and DMM theories and indicates new physics is involved with phonon transport across interfaces.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ALUMINUM AND SILICON; ATOMIC LEVEL DISORDER; ELECTRON–PHONON COUPLINGS; MOLECULAR DYNAMICS; PHONONS; THERMAL INTERFACE CONDUCTANCE

Document Type: Research Article

Publication date: 2015-02-01

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more